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By means of an approximate method we analyze the relationships which exist 
between the optical thickness of a layer and the coefficients of diffuse 
radiative transmission and reflection, as well as an analysis of the experi- 
mental conditions. 

The solution of the two-dimensional problem of the propagation of radiation from a point 
source through a scattering layer is of considerable significance in the case of radiative 
heat exchange, the spectroscopy of scattering media, atmospheric optics, neutron transport, 
and other branches of physics. To derive this solution we generally make use of the methods 
of direct numerical integration of the transport equation, the method of spherical harmonics, 
the Monte Carlo method, etc. [1-4]. However, direct utilization of the derived data, as cited 
in the literature, for purposes of engineering calculations is difficult in the majority of 
cases. In the present paper we reduce the stated problem to the familiar problem of radiative 
transfer in a layer on which a plane-parallel bundle of external radiation is incident [5]. 
It is demonstrated that the utilization of the proposed method leads to errors that are quite 
satisfactory from the standpoint of estimating the radiation of the spot source, transmitted 
or reflected by the scattering layer. 

Let a layer of a scattering medium with a thickness (z I - z 0) be characterized by absorp- 
tion indices K and scattering indices a [~ = a/(K + a) represents the probability of quantum 
survival]. The positive direction of the z axis is set in a direction away from the source, 
perpendicular to the surface of the layer (Fig. la). We will assume the scattering to be 
isotropic. The anisotropy of the scattering may be taken into consideration by the method 
developed in [6, 7]. At a distance z 0 from the layer we find a radiation point source of 
power S 0. The problem is symmetrical about the OZ axis, and we will therefore limit our- 
selves to an examination of this problem in the ZOY plane (Fig. ib). 

Let us turn to the problem of the transmission and reflection of radiation by a plane 
layer of finite optical thickness T 0 = (K + a)z 0 irradiated by a bundle of a certain power, 
at some angle. As we know [5], in this case the coefficients of diffuse transmission and 
reflection for the radiation are determined by the following expressions: 

a(~,  ~, ~o)= t(~0, ~, ~o) _ ~ ~ ( ~ ) ~ ( ~ ) - - ~ ( ~ o ) ~ ( ~ )  
~oSo 4 ~ - -  ~o ( 1 ) 

P C~o, ~, ~ )  = Z (0, ~, ~o) _ ~ ~ (~o) ~ (~) - -  ~ (~o) ~ C~ , 
~oSo 4 ~ + ~o 

where ~(~) and ~(~) are the Ambartsumyan functions; 8 o = arccos ~0 and 8 = arccos ~ determine 
the directions of incidence of external radiation and the observation of the transmitted or 
reflected radiation. The Ambartsumyan functions are calculated from a system of integral 
equations and at the present time these have been tabulated in considerable detail for a num- 
ber of physical situations (accounting for anisotropy, the phenomena of redistribution of 
radiation by frequency, etc.) (see, for example [5, 8, 9]). 

Let us choose some angle 7 (on the order of 5-20 ~ ) and let us examine the diagram shown 
in Fig. lb. The rays S0A' , S0A , SoB ..... combining to form the angle 7, divide a plane layer 
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Calculating the reflection and transmission of the 
radiation emitted from a point source. 

o ~? ',I~ z,~ o o,, o,8 ,zz ,/6 

Fig. 2. Angular distribution of reflected (a) and transmitted 
(b) radiation when ~ = I0 ~ for n = 0 (solid lines) and n = 6 
(dashed lines): i) T O = 0.6; 2) 1.0; 3) 3.0. 

TABLE I. Values of the Ambartsymyan Functions ~(~0, P) and 
~(m0, P) for the Conservative Case [8] 

0, I 
0,2 
0,3 
0,4 
0,5 
0,6 
0,7 
0,8 
0,9 
1,0 

�9 T o ~ 

0,2 

1,147 
1,198 
1,222 
1,236 
1,245 
1,251 
1,256 
1,259 
1,262 
1,265 

),241 
3,534 
3,711 
3,823 
3,899 
3,953 
3,995 
1,027 
1,053 
1,074 

0 , 6 6  1 ,O 

(p 

2,0 3 , 0  

1,182 
1,293 
1,368 
1,421 
1,460 
1,489 
1,512 
1,531 
1,546 
1,558 

0,075 1,194 0,056 
0,213]1,327 0,137 
0,379 ] 1,429 0,250 
0,530]1,510 0,376 
0,657 ] 1,574 0,500 
0,752 ] 1,625 0,615 
0,850]1,668 0,719 
0,923]1,703 0,811 
0,986j 1,732 0,893 

1,757 1,039 ] O, 966 
I 

1,211 0,037 
1,365 0,086 
1,498 O, 149 
1,613 0,224 
1,715 0,311 
1,805 0,404 
1,884 0,501 
1,954 0,597 
2,016 0 691 
2,071 017801 

1,219 0,028 1,247 
1,385 J 0,066 J 1,450 
1,531 J 0,112] 1,643 
1,663 [ O, 167] 1,829 
1,785 J 0,231 J 2,013 
1,895 J 0,303 J 2,194 
1,997 J 0,381 j 2,374 
2,090J 0,464[ 2,553 
2,175 0,54912,731 
2,254 0,636 2,908 

in the direction of the OY axis into a number of finite layers AA ~ , AB, BC, ... To solve 
the stated problem we will assume that these layers are characterized by certain w~lues for 
the transmission coefficients o n = o(T0, p, Pn) and for the reflection coefficients Pn = 
P(T0, P, Pn), equal to their infinite analogs. As a consequence of the insignificant differ- 
ence in the radiation streams at the separating surfaces AA0, BB0, CC6, ..., given a suffi- 
ciently large n, such a representation is entirely satisfactory. There is no doubt that the 
error depends on the magnitude of ~. With small y values the interaction of the isolated 
adjacent layers is quite strong, but in this case the intensities of radiation incident on 
the corresponding layers will differ insignificantly from each other, and this weakens the 
indicated interaction. As ~ is increased, the interaction between the layers (with the excep- 
tion of the boundary region between the layers) is weakened due to the larger value (K + o)" 
AYn= (~ + ~ -- Yn), but in this case the error is increased because of the disruption 
of the plane-parallel condition under which the external radiation is incident. Hence fol- 
lows the need to study the unique features of the relationships o n and Pn (n = 0, i, 2, ..., 
N; N = v/2u to the quantity ~. For conservative systems (X = i) the criterion of validity 
for the derived solution can be found in the equality 
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Fig. 3. Reflected (a) and transmitted (b) radiation as func- 
tions of the optical thickness of the layer for various zones: 
i )  n : 0; 2 )  3 ;  3) 6 .  
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Fig. 4. Reflectance (a) and transmittance (b) of the scatter- 
ing layer, with various optical thicknesses: i) T 0 = 0.2; 2) 
0.4; 3) 0.6; 4) 0.8; 5) 1.0; 6) 2.0; 7) 3.0 (T o + ~ is repre- 
sented by the dashed curve, and the data have been reduced by 
a factor of two). 

1 N--I  

0 n..~l 
( 2 )  

where o n and Pn (n = 0, l, 2 .... , N - i) is calculated in accordance with (i), while for 
a N and PN we assume the values of a and p when Pn = cosT(N - 1/4) = sinT/4. In the case 
of a semiinfinite layer (T o + ~) o n + 0 (n = 0, i, 2 .... , N), A(~0) + i, which may serve 
as a criterion of validity for the selected model. Another criterion (but now more approxi- 
mate) is 

1 1 I 1 

0 0 0 0 

Inequality (3) follows from the fact that in relationship (2) the quantities a n and Pn de- 
cline markedly as n increases. The accuracy of the proposed method will subsequently be de- 
fined more correctly in the case of various physical conditions when compared to the numeri- 
cal calculations through utilization of the Monte Carlo method. 

For each n-th bounded layer (Yn ~ Y ~ Yn+z, AA' = 2y0) it is not difficult to determine 
the original parameters for the calculation of the transmission coefficients a n and the re- 
flection coefficients Pn (n = 0, i, 2 .... , N): 

S o  T l ~.  = cos 8~, O. = ny, S~  = - - r  ,~ - ~ -  ~n, ( 4 )  
Zg 

w h e r e  T i n  i s  t h e  t r a n s m i s s i o n  f u n c t i o n  f o r  t h e  r a d i a t i o n  a l o n g  t h e  n - t h  r a y  f r o m  t h e  s o u r c e  
S O t o  t h e  n - t h  l a y e r .  I n  t h e  g e n e r a l  c a s e  
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Fig. 5. The o + p = A criteria as a function 

of the optical thickness of the layer: i) 
relationship (3); 2) single scattering. 

TABLE 2. Relative Values of A(T 0) as a Function 

of X [the values of A(T 0) for X = 5~ are taken 
to be i] 

0,4  1,o 2 ,0  3 ,o  To-~| 

5 ~ (N=18) 
I0 ~ (N----9) 
15 ~ (N----6 
18 ~ (N=5 I 

1,0 
0,998 
0,995 
0,995 

1,0 
0,998 
0,996 
0,995 

1,0 
0,997 
0,995 
0,993 

1,0 
0,997 
0,994 
0,992 

1,0 
0,991 
0,993 
0,991 

TI.  = T {' alZ~ ~ (5) 

(~1 i s  t h e  a t t e n u a t i o n  f a c t o r  i n  t he  medium f o r  t h e  case i n  wh ich  z < 0 ) .  For  a u n i f o r m  and 
gray medium with z < 0 

T~n = exp ( ~ z o )  ~ . �9 ( 5 a )  

Then,  in  a c c o r d a n c e  w i t h  (1)  we f i n d  t h a t  f o r  t h e  r e g i o n  Yn <- Y <- Yn+l t h e  i n t e n s i t i e s  o f  
t h e  t r a n s m i t t e d  and r e f l e c t e d  r a d i a t i o n  a t  a d i s t a n c e  z 2 f rom t h e  l a y e r  in  t h e  d i r e c t i o n  O = 
a r c c o s  ~ a r e  e q u a l  t o :  

I!~)grams= I,, (%, ~, ~t,,) = ____L4 I S oz2 T2TI,~ -~N Ix,,3 ~ (~n) ~ (~) - -  ~ (~',,) �9 (~) , 
2 ~-- ~ ( 6 )  

l(")rel = l .  (0, F, ft.) = TZ S 2 TaTI~ F~ ~ (F.) ~ (F) - -  ~ (~.) r (F) , (7)  2 g +  ~ .  

where T 2 = T(~2z2/~) ; T 3 = T(azz2/~) ; a 2 is the attenuation factor in the medium z > z 0. We 
note that relationships (6) and (7) differ from each other by the factor ~n 2. 

Specific calculations of relationships (6) and (7) have been carried out for the conserva- 

tive case (I = i), Tin = T 2 = T 3 = 1 (the media in the case of z > 0 and z < 0 are trans- 
parent) and y = 30, 18, 15, and 5 ~ . The values of the Ambartsumyan functions for the conserva- 
tive case are shown in Table I, in accordance with the data from [8]. 

The angular distribution of the radiation emanating out of two zones of the layer (n 
= 0 and n = 6), for the case in which y = i0 ~ is shown in Fig. 2. With an increase in t 0 
the anisotropy of the angular distribution diminishes and in the direction perpendicular to 
the layer (8 = 0~ the radiation may exceed that in the direction "of the edge" (8 = 90~ 
especially for the transmitted radiation. In terms of absolute magnitude, the intensities 
of the reflected and transmitted radiation depend variously on the optical thickness of the 
layer (Fig. 3). For the far zones the reflected radiation (Fig. 3, n = 6, shown as curve 
3) rather quickly tends to the asymptotic value. For the transmitted radiation, on attaining 
some maximum, the intensity diminishes, with the intensity of the reflected radiation reaching 
its maximum value at various values of T 0 for the various zones. The angular distribution 
of the zone-summed radiations is shown in Fig. 4. With a change in T o from 0.2 to 3 the ani- 
sotropy of the angular distribution 

r = 1 t 0 = 9 o o / I i o = o o  
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changes from 6.0 to 1.5 for the reflected radiation and from 3.0 to 0.4 for the transmitted 
radiation. 

If the function A(T 0) is presented in accordance with relationship (2), then it occupies 
some intermediate position between relationship (3) and that quantity determined from a single 
scattering of the radiation (Fig. 5). With an error not exceeding 10-15%, curve 1 in Fig. 
5 can be obtained by means of approximate relationships for the Ambartsumyan functions, such 
as those derived for the conservative scattering medium described by Samson in [i0]: 

1 [(2~-}- 1)(1 -1- % -- P) --I- P(2P-- 1)exp ( - - # )  ] , 
~ap(~) = I ~-X------~- 

1 [p(2~ + 1)-- (2p-- 1)(1 + % + ~) exp (----~-) ] .  % = 

It is interesting to note that the derived results depend only slightly on the magnitude 
of y selected. This is borne out in Table 2, where we find the calculation data for A(~0) 
for various values of 7. For Y = 30~ in calculating the reflected radiation, we find that 
the error is as high as 4-5%. Subsequently, to establish the accuracy of the proposed method 
in various physical situations, we conducted a comparison with the calculation data obtained 
by means of the Monte Carlo method. 

NOTATION 

In(T0, ~, ~n) [or In(0, D, ~n)], intensity of layer-transmitted (or layer-reflected) 
radiation from the n-th zone in the direction 8 = arccosD; So, the power of the point source; 
T and R, transmittance and reflectance functions; ~(D) and ~(D), Ambartsumyan functions; z0, 
distance from the radiation source to the layer; zl, thickness of the layer; T 0 = (< + o)zl, 
optical thickness of the layer; K and o, coefficients of medium absorption and scattering; 
k = o/(K + o), probability of quantum survival. 
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